Everything you need to run a trial PACE® allele-specific PCR Genotyping Reaction on your existing lab equipment. Each PACE Trial Kit includes Test DNA samples, PACE Genotyping Assays, PACE Master Mix and a comprehensive PACE Genotyping Trial Kit Manual.
Anyone who wants to try PACE genotyping reagents in their lab for the first time with a set of validated DNA samples, SNP assays and PACE Master Mix.
Step 1. Dispense each of the three trial DNA samples (DNA 1, 2 and 3) plus water (No Template Control) in triplicate onto a PCR plate using the suggested volumes.
Step 2. Combine appropriate volumes of PACE Genotyping Master Mix with PACE Genotyping Assay in a tube, as directed, then mix.
Step 3. Dispense the combined mixtures into each of the wells containing DNA using volumes indicated. Each test now contains a complete PACE Genotyping Reaction.
Step 4. Seal your PCR plate with an optically clear seal and centrifuge to ensure all components are at the bottom of the wells.
Step 5.Thermally cycle the reaction plate using the thermal cycling conditions provided.
Step 6. Read the plate and compare data produced with the expected results provided in the manual. Simple!
More information on the PACE genotyping chemistry and how it works can be found here: www.3crbio.com/#pace. PACE allele-specific PCR is used for the detection of SNPs, Indels and other sequence variants.
PACE Genotyping Master Mix is our original genotyping master mix and the most cost-effective for high-throughput, cost-driven applications.
PACE 2.0 Genotyping Master Mix is an enhanced version of PACE Genotyping Master Mix. PACE 2.0 Genotyping Master Mix has a higher signal-to-noise ratio and produces tighter groups on genotyping plots. It is also inhibitor-resistant making it suitable for crudely extracted DNA, and provides the customer the ability to monitor the reaction in real-time.
PACE Multiplex Master Mix enables four fluor amplification and detection. It enables customers to run two SNP assays per well or alternatively, one reference gene and a further three genes of interest. To be able to utilise this master mix, you will require a plate reader capable of reading FAM, HEX, ATTO 590, and ATTO 647N (wavelengths of which can be found in our user manual). There is also an optional normalisation dye ATTO 680.
PACE OneStep RT-PCR Master Mix is a one-step RT-PCR PACE formulation, enabling the analysis of RNA samples directly, suitable for both real-time and endpoint detection.
Purification of DNA will generally lead to better genotyping data quality than using a crude extract, but PACE Genotyping Master Mix works well with most crude DNA extraction methods. For some crops such as palm oil, where inhibitor concentration is high in crude extracts, we recommend the use of PACE 2.0 Genotyping Master Mix, which contains inhibitor-resistant components.
If you are using a qPCR instrument, many of the software packages that are supplied with the instrument can analyse PACE genotyping reaction data in real-time and endpoint modes.
For some qPCR instruments, and plate readers, where the supplied software cannot perform endpoint genotyping analysis directly, it is possible to use MS Excel or alternative software packages for the analysis.
You will require a plate reader capable of reading FAM, HEX, ATTO 590, ATTO 647N and ATTO 680 (the wavelengths of which can be found in our PACE Multiplex Master Mix User Guide). It is important that filters used in the plate reader have narrow bandwidths (10 nm) to avoid cross fluorescence. Alternatively, plate readers using monochromators capable of using at least five channels with 10 nm bandwidth will also work.
PACE Multiplex Master Mix contains uses the fluorophores FAM, HEX, ATTO 590, ATTO 647N. You can use PACE Multiplex Master Mix on any qPCR instrument or with any plate reader that can detect these fluorophores. Please refer to the PACE Multiplex Master Mix User Guide and your instrument manufacturer first.
Telephone:
Email:
Address:
Office hours:
Mon-Fri : 9am - 5pm (GMT)
You are currently viewing a placeholder content from Facebook. To access the actual content, click the button below. Please note that doing so will share data with third-party providers.
More InformationYou are currently viewing a placeholder content from X. To access the actual content, click the button below. Please note that doing so will share data with third-party providers.
More Information